The new group of non-pathogenic plant-associated nitrogen-fixing Burkholderia spp. shares a conserved quorum-sensing system, which is tightly regulated by the RsaL repressor.
نویسندگان
چکیده
A novel group of nitrogen-fixing plant-associated Burkholderia species has emerged in the last few years. The purpose of this investigation was to determine if these species possess an N-acylhomoserine lactone (AHL) quorum-sensing (QS) cell-cell signalling system, and whether it is important for nitrogen fixation and other phenotypic features in Burkholderia kururiensis. It was determined that B. kururiensis, and other members of this Burkholderia species cluster, contain at least one highly conserved system, designated BraI/R, which produces and responds to N-dodecanoyl-3-oxo-homoserine lactone (C12-3-oxo-AHL). The BraI/R AHL QS is not involved in the regulation of nitrogen fixation or in several other important phenotypes, indicating that it may not be a global regulatory system. The BraI/R system is similar to LasI/R of Pseudomonas aeruginosa and, as with lasI/R, there is a repressor gene, rsaL, between the braI/R genes. B. kururiensis normally synthesizes very low levels of C12-3-oxo-AHL, but the situation dramatically changes when RsaL is missing since an rsaL mutant displays a marked increase in AHL production. This unique stringent regulation indicates that RsaL could be an on/off switch for AHL QS in B. kururiensis and the ability to produce very high levels of AHL also questions the role of this molecule in the novel group of Burkholderia. The presence of a well-conserved and distinct AHL QS system among all the diazotrophic Burkholderia is a further indication that they are closely related, and that this system might play an important and conserved role in the lifestyle of this novel group of bacterial species.
منابع مشابه
Quorum Sensing in Microbial Virulence
Cell-to cell communication occurs via a signaling pathway referred to as quorum sensing. There are four main types of these systems according to the chemical nature of signal molecules used by microorganisms to elicit expression of target genes in response to environmental stimuli or need of microbial communities. Type I system acts by using acyl homoserine lactones as signals to trigger the ex...
متن کاملBurkholderia Tropicalis, a Potential Bacterial Inoculant to Control Nematodes and Improve Sugarcane Growth
The bacterial genus Burkholderia is abundant in the sugarcane rhizosphere. Literature states that some Burkholderia strains are nematode and fungal antagonists and/or plant growth promoters. Research was undertaken to obtain indigenous sugarcane-associated Burkholderia strains that possess these properties. Preliminary screening produced 13 isolates that are able to paralyse juveniles of Meloid...
متن کاملCrystal structure of Pseudomonas aeruginosa RsaL bound to promoter DNA reaffirms its role as a global regulator involved in quorum-sensing
Pseudomonas aeruginosa possesses at least three well-defined quorum-sensing (QS) (las, rhl and pqs) systems that control a variety of important functions including virulence. RsaL is a QS repressor that reduces QS signal production and ensures homeostasis by functioning in opposition to LasR. However, its regulatory role in signal homeostasis remains elusive. Here, we conducted a ChIP-seq assay...
متن کاملThe Pseudomonas quorum-sensing regulator RsaL belongs to the tetrahelical superclass of H-T-H proteins.
In the opportunistic human pathogen Pseudomonas aeruginosa, quorum sensing (QS) is crucial for virulence. The RsaL protein directly represses the transcription of lasI, the synthase gene of the main QS signal molecule. On the basis of sequence homology, RsaL cannot be predicted to belong to any class of characterized DNA-binding proteins. In this study, an in silico model of the RsaL structure ...
متن کاملThe ppuI-rsaL-ppuR quorum-sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling biosynthesis of the cyclic lipopeptides putisolvins I and II.
Pseudomonas putida strain PCL1445 produces two cyclic lipopeptides, putisolvin I and putisolvin II, which possess surface tension-reducing abilities and are able to inhibit biofilm formation and to break down existing biofilms of several Pseudomonas spp., including P. aeruginosa. Putisolvins are secreted in the culture medium during growth at late exponential phase, indicating that production i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 154 Pt 7 شماره
صفحات -
تاریخ انتشار 2008